新聞中心

EEPW首頁 > 智能計算 > 設計應用 > 隨機過程在數據科學和深度學習中有哪些應用?

隨機過程在數據科學和深度學習中有哪些應用?

作者:雷鋒字幕組時間:2019-08-20來源:雷鋒網收藏
編者按:機器學習的主要應用之一是對隨機過程建模。

“The only simple truth is that there is nothing simple in this complex universe. Everything relates. Everything connects”— Johnny Rich, The Human Script

本文引用地址:http://www.aejfsk.live/article/201908/403911.htm

介紹

的主要應用之一是對隨機過程建模。中一些隨機過程的例子如下:

●泊松過程:用于處理等待時間以及隊列。

●隨機漫步和布朗運動過程:用于交易算法。

●馬爾可夫決策過程:常用于計算生物學和強化學習。

●高斯過程:用于回歸和優化問題(如,超參數調優和自動)。

●自回歸和移動平均過程:用于時間序列分析(如,ARIMA模型)。

在本文中,我將簡要地向你介紹這些隨機過程。

歷史背景

隨機過程是我們日常生活的一部分。隨機過程之所以如此特殊,是因為隨機過程依賴于模型的初始條件。在上個世紀,許多數學家,如龐加萊,洛倫茲和圖靈都被這個話題所吸引。

如今,這種行為被稱為確定性混沌,它與真正的隨機性有著截然不同的范圍界限。

由于愛德華·諾頓·洛倫茲的貢獻,混沌系統的研究在1963年取得了突破性進展。當時,洛倫茲正在研究如何改進天氣預報。洛倫茲在他的分析中注意到,即使是大氣中的微小擾動也能引起氣候變化。

洛倫茲用來描述這種狀態的一個著名的短語是:

“A butterfly flapping its wings in Brazil can produce a tornado in Texas”

(在巴西,一只蝴蝶扇動翅膀就能在德克薩斯州制造龍卷風)

— Edward Norton Lorenz

(愛德華·諾頓·洛倫茲)

這就是為什么今天的混沌理論有時被稱為“蝴蝶效應”。

分形學

一個簡單的混沌系統的例子是分形(如圖所示)。分形是在不同尺度上不斷重復的一種模式。由于分形的縮放方式,分形不同于其他類型的幾何圖形。

分形是遞歸驅動系統,能夠捕獲混沌行為。在現實生活中,分形的例子有:樹、河、云、貝殼等。

圖1:MC. Escher,Smaller and Smaller[1]

在藝術領域有很多自相似的圖形。毫無疑問, MC. Escher是最著名的藝術家之一,他的作品靈感來自數學。事實上,在他的畫中反復出現各種不可能的物體,如彭羅斯三角形和莫比烏斯帶。在"Smaller and Smaller"中,他也反復使用了自相似性(圖1)。除了蜥蜴的外環,畫中的內部圖案也是自相似性的。每重復一次,它就包含一個有一半尺度的復制圖案。

確定性和隨機性過程

有兩種主要的隨機過程:確定性和隨機性。

在確定性過程中,如果我們知道一系列事件的初始條件(起始點),我們就可以預測該序列的下一步。相反,在隨機過程中,如果我們知道初始條件,我們不能完全確定接下來的步驟是什么。這是因為這個過程可能會以許多不同的方式演化。

在確定性過程中,所有后續步驟的概率都為1。另一方面,隨機性隨機過程的情況則不然。

任何完全隨機的東西對我們都沒有任何用處,除非我們能識別出其中的模式。在隨機過程中,每個單獨的事件都是隨機的,盡管可以識別出連接這些事件的隱藏模式。這樣,我們的隨機過程就被揭開了神秘的面紗,我們就能夠對未來的事件做出準確的預測。

為了用統計學的術語來描述隨機過程,我們可以給出以下定義:

●觀測值:一次試驗的結果。

●總體:所有可能的觀測值,可以記為一個試驗。

●樣本:從獨立試驗中收集的一組結果。

例如,拋一枚均勻硬幣是一個隨機過程,但由于大數定律,我們知道,如果進行大量的試驗,我們將得到大約相同數量的正面和反面。

大數定律指出:

“隨著樣本規模的增大,樣本的均值將更接近總體的均值或期望值。因此,當樣本容量趨于無窮時,樣本均值收斂于總體均值。重要的一點是樣本中的觀測必須是相互獨立的。”

--Jason Brownlee

隨機過程的例子有股票市場和醫學數據,如血壓和腦電圖分析。

泊松過程

泊松過程用于對一系列離散事件建模,在這些事件中,我們知道不同事件發生的平均時間,但我們不知道這些事件確切在何時發生。

如果一個隨機過程能夠滿足以下條件,則可以認為它屬于泊松過程:

●事件彼此獨立(如果一個事件發生,并不會影響另一個事件發生的概率)。

●兩個事件不能同時發生。

●事件的平均發生比率是恒定的。

讓我們以停電為例。電力供應商可能會宣傳平均每10個月就會斷電一次,但我們不能準確地說出下一次斷電的時間。例如,如果發生了嚴重問題,可能會連續停電2-3天(如,讓公司需要對電源供應做一些調整),以便在接下來的兩天繼續使用。

因此,對于這種類型的隨機過程,我們可以相當確定事件之間的平均時間,但它們是在隨機的間隔時間內發生的。

由泊松過程,我們可以得到一個泊松分布,它可以用來推導出不同事件發生之間的等待時間的概率,或者一個時間段內可能發生事件的數量。

泊松分布可以使用下面的公式來建模(圖2),其中k表示一個時期內可能發生的事件的預期數量。

圖2:泊松分布公式[3]

一些可以使用泊松過程模擬的現象的例子是原子的放射性衰變和股票市場分析。

隨機漫步和布朗運動過程

隨機漫步是可以在隨機方向上移動的任意離散步的序列(長度總是相同,圖3)。隨機漫步可以發生在任何維度空間中(如:1D,2D,nD)。

圖3:高維空間[4]中的隨機漫步

現在我將用一維空間(數軸)向您介紹隨機漫步,這里解釋的這些概念也適用于更高維度。

我們假設我們在一個公園里,我們看到一只狗在尋找食物。它目前在數軸上的位置為0,它向左或向右移動找到食物的概率相等(圖4)。

圖4:數軸[5]

現在,如果我們想知道在N步之后狗的位置是多少,我們可以再次利用大數定律。利用這個定律,我們會發現當N趨于無窮時,我們的狗可能會回到它的起點。無論如何,此時這種情況并沒有多大用處。

因此,我們可以嘗試使用均方根(RMS)作為距離度量(首先對所有值求平方,然后計算它們的平均值,最后對結果求平方根)。這樣,所有的負數都變成正數,平均值不再等于零。

在這個例子中,使用RMS我們會發現,如果我們的狗走了100步,它平均會從原點移動10步(√100=10)。

如前面所述,隨機漫步用于描述離散時間過程。相反,布朗運動可以用來描述連續時間的隨機漫步。



上一頁 1 2 下一頁

評論


相關推薦

技術專區

關閉
七星彩走势图综合版 除权是赚钱还是亏本 电脑小号赚钱 微信平台客服赚钱 拍照赚钱的软件 美团 1000炮李逵劈鱼 几台空闲电脑可以做什么赚钱 贵州麻将新手入门 电商设计师赚钱 梦幻西游109和155那个赚钱多 金皇朝彩票网址 三四线城市的人都怎么赚钱 现在网上怎么赚钱 海龙王捕鱼话费 神武菜农怎么赚钱 山东德州麻将 360热点怎么赚钱